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The influence of electron density gradients on optical guiding in free-electron lasers (FEL’s) is
considered. We study a model problem of a FEL which employs a sheet electron beam in the ab-
sence of a cavity or a waveguide. We calculate the gain and the rate of optical guiding by solving
for the eigenvalues and the actual eigenmodes of the system. Similar to what has been found by
Moore for a cylindrical beam [Nucl. Instrum. Methods A239, 19 (1985)], we find that two parame-
ters characterize the interaction: a coupling parameter and a detuning parameter. We solve the
problem for two density profiles, a uniform density profile and a triangular-shaped density profile.
For large and small values of the coupling parameter we obtain the results analytically. For inter-
mediate values of the coupling parameter we obtain numerical results. When the coupling parame-
ter is small, diffraction is large. The gain and the wave profile are then similar for the two density
profiles. When the coupling parameter is large, optical guiding is large. The gain for the
triangular-shaped beam is then larger by 2!”? than the gain for the uniform beam. When the cou-
pling parameter is large, the wave profile for the uniform density beam converges to a certain profile
confined to the beam volume. For the triangular-shaped beam the wave profile becomes more and
more concentrated near the midplane of the sheet beam. For the solution of the problem we derive
an energy integral that determines the domain in the complex plane where nonreal eigenvalues are
allowed. We also show the existence of an accumulation point of nonreal eigenvalues in certain
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cases.

I. INTRODUCTION

Optical guiding in free-electron lasers (FEL’s) (Ref. 1)
has recently become a subject of extensive theoretical®> >
and experimental® study. The guiding of the amplified
wave by the electron beam cancels the need for a cavity
or a waveguide. It also increases the filling factor, the ra-
tio between the cross sections of the electron beam and
the wave beam, and thus strengthens the interaction. In
this paper we are interested in optical guiding in the
linear growth regime of the FEL. We find the conditions
under which growing eigenmodes of the system are
confined to the volume of the electron beam.

We adopt the approach of reducing the Maxwell and
the cold-fluid equations to a two-point boundary value
problem with an eigenvalue. The solutions for the wave
fields are required to be bounded at infinity. The eigen-
values determine the growth rate of the FEL instability,
and the eigenfunctions describe the transverse profile of
the wave. The wave fields are described without the use
of vacuum modes or of other systems of orthogonal func-
tions. Instead, we solve for the actual eigenmodes of the
system. A similar approach was taken by Moore® who a
analyzed a FEL with a cylindrical beam of uniform densi-
ty.

We examine a FEL which employs a rectangular, or
sheet, electron beam in a planar wiggler. Experiments
with such a sheet-beam FEL in a planar wiggler have re-
cently been reported.” The electron beam propagates in
the z direction and is thin in the y direction, the direction
of both the wiggler field and the transverse gradient of
the wiggler field. The electron beam is much thicker in
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the x direction, which is possible practically because the
planar wiggler has weak x dependence. The use of such a
sheet electron beam enables one to increase the current
by increasing the beam cross section through making the
beam wide in the x direction. This is in contrast to in-
creasing the current by increasing the beam density
which, for high-current beams, is difficult because of the
generation of strong repulsive self-fields. Since the
wiggler field depends only weakly on x, the relatively
wide-x dimension of the beam does not induce inhomo-
geneities which would be destructive to the resonance
conditions of the FEL. We assume the sheet beam to be
infinite in the x dimension and finite in the y dimension.
We assume further that all the quantities are x indepen-
dent and that all the transverse dependence is on y only.
We write the Maxwell and the cold-fluid equations which
are y and z dependent. We then simplify the equations
near the FEL resonance to be y dependent only. The
governing equation which is thus obtained, is a second-
order ordinary differential equation with an eigenvalue.
The growth rate of the FEL instability is given by the
imaginary part of the eigenvalue. Similarly to Moore we
select the solution which vanishes at infinity and which
satisfies certain continuity conditions across the beam
boundary.

We calculate the gain and the rate of optical guiding
for two density profiles. The first is a step profile, where
the beam is uniform but finite in the y direction. The
second profile is triangular shaped, where the density falls
linearly in y from its maximal value in the midplane of
the sheet to zero on the beam boundary.

We find that in addition to the beam radial density
profile, there are two characteristic parameters: a cou-
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pling parameter, which is a combination of the wiggler
strength and the electron current, and a detuning param-
eter. We solve the problem analytically for large and
small values of the coupling parameter for the two densi-
ty profiles. For intermediate values of this parameter we
find the results numerically.

When the coupling parameter is large, optical guiding
is dominant for both density profiles. For the uniform
beam the gain scales as in the one-dimensional (1D)
theory, similar to the gain for the cylindrical beam.> For
the triangular-shaped beam the gain is larger by a factor
of 2173 than for the uniform beam, when both beams have
the same current and the same thickness. In this case of
strong optical guiding, the wave is confined to the beam
volume for the uniform beam and to the midplane for the
triangular-shaped beam. The opposite case of small cou-
pling coefficient is the case of large diffraction. Here the
wave extends well beyond the beam boundaries and for
the fundamental mode is nearly constant across the
beam. The gain is the same for both density profiles.
Contrary to the case of a cylindrical beam,* the normal-
ized gain does not diverge when the coupling parameter
goes to zero but converges to a constant. That constant
is the same for both density profiles.

We are interested mainly in the most unstable mode.
However, we also show the existence of an accumulation
point of infinite unstable modes. We assume that the
electron beam is thin enough so that we can ignore the
transverse dependence of the wiggler field. We also only
consider a tenuous beam and neglect the static self-fields
of the electrons. (This is in contrast to our recent
analysis of the FEL interaction where the wiggler trans-
verse gradients and beam static self-fields were not negli-
gible and in fact played a major role.}~19)

In Sec. IT we derive the governing equation. In Sec. III
we formulate an energy integral which determines the
domain in the complex plane where nonreal eigenvalues
are allowed. In Sec. IV we solve the equation for the con-
stant density electron beam and in Sec. V for the
triangular-shaped electron beam. We give numerical ex-
amples and conclude in Sec. VI.

II. THE GOVERNING EQUATION

We describe the electron-beam dynamics by the cold-
fluid equations. These are the continuity equation

14

. at(yHH—V (PH)=0, (1
and the momentum equation

Jci%!;— +P-VP=—_yE—PXB . @)

Here P is the normalized momentum (the momentum di-
vided by mec), v is (1+P-P)'/2, H is the normalized densi-
ty [the density multiplied by 4me?/(mc2y)], e and m are
the electron charge and mass, c is the velocity of light in
vacuum, and E and B are the normalized electric and
magnetic fields [the fields multiplied by e /(mc?)].
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The electron beam we consider propagates along a pla-
nar magnetic wiggler field of the approximated form

B,=¢,B,sin(k,z) . (3)

The electron beam is assumed to be infinitely long in the z
direction, and its transverse cross section is assumed to
be rectangular. We make the further assumption that the
beam is infinitely long in the x direction since we assume
that the beam width in that direction is much larger than
its width in the y direction. We require

koa <<1, 4)

where 2a is the thickness of the beam in the y direction.
Inequality (4) is necessary (though not always sufficient)
for the validity of form (3) for the magnetic wiggler. The
governing equations of the FEL interaction have been de-
rived many times before. We rederive them in a form
suited to our purpose. We limit ourselves to solutions
which do not depend on x.

In order to perform a linear stability analysis we write
each quantity as a sum of zeroth-order time-independent
terms and first-order time-dependent terms of the form

H(y,z,t)=h (y,z)+Re[dh(y,z)e ~i*] , (5a)
P(y,z,t)=p(y,z)+Re[6p(y,z)e ~'*¢] , (5b)
v(y,z,t)=T(y,z)+Re[dy(y,2)e =], (5¢)
B(y,z,t)=By(z)+Re[8B(y,z)e ~'*] , (5d)
E(y,z,t)=Re[8E(y,z)e ~i*"] . (5e)

We neglect static self-fields of the beam. Time-
independent solutions of Egs. (1) and (2), in the presence
of the field (3), are

I'(y,z)=T =const , (6a)
B,
Dy (z)=——cos(kyz) , (6b)
ko
Py=0 s (60)
BZ
pzz(z)=F2~1————’;’—cosz(koz) , (6d)
kg
h(y,z)=h(y,0)p,(0)/p,(2) . (6e)

Usually B2 /k3 is much smaller than (I'>— 1) and we may
approximate

2
po=ri—n2 o —L Bo o @
AT 1) k2

We are interested in the fundamental resonance and may
further approximate

p,(z)=(2—1)!"2 (8)
and
h(y,z)=h(y,0) . 9)

Having completed the solution for the steady-state flow,
we turn now to the first-order terms. Since p, is zero and
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since p does not depend on y, the linearized momentum
equation is

—iwI‘8p+pz%6—zp—=—FSE—SpXBO~pX6B . (10)
The quantities in this equation depend on both y and z.
However, because the derivative is with respect to z only,
as it is in the 1D approximation, we continue the analysis
in a somewhat condensed form. Because of the periodici-
ty of the steady-state flow, each perturbed quantity is
written as
. e ink
8f(y,z)=e™® 3 5f,(yle . (11)

n=-—o0

We are interested in k close to @ and assume that the
largest Fourier components of the wave fields are 8E, and
6By, If, in addition,

ol —(k +kg)p, =0, (12)

one of the Fourier components of the longitudinal
momentum, 8p,,, becomes large. The transverse com-
ponents 6p, ; and 8p, ; are not resonant since the sources
in the components of the momentum equation which
determine them are small. Thus approximately,

i(—T+kp,)8p, o= —T8E, o+p,5B,, , (13)

B
i[ ol +(k +ko)p,18p,, =—27f;53y,o~ *jfﬁpx,o ,  (14)

which yield for 8p, | [by using Eq. (12)]
iB,T" 3E, o

" 2kop, [—@T+(k +kop,]

The perturbed continuity equation is

98n ,98p, 98p,
—iwl'8h —iwh
ioT'8h —iwhdy +p, 32 +h 32 +h 3

+apyg—z:o . e

op, 1= (15)

Since 8p, is not resonant and is much smaller than &p,,
and since

I'éy =p,6p, , (17

the perturbed density is

_ thopzapz,l
M —ol+(k +kolp,]

8h, = (18)

The perturbed current, the source in Maxwell’s equa-
tions, is

8j=—hbp—pdh . (19)
To lowest order, this current is
8j=—¢€,p, 6h . (20)

Substituting this expression into the Maxwell equation
and using the fact that 8E; is dominant over the other
wave Fourier components, we arrive at the following final
form of the equations:

9%8E,
ay?

hwB28E,
+(?*—k*)BE, = > - 2D
2kol —aT +(k +ko)p, ]

We omitted the subscript zero in the notation for the
zeroth Fourier component of the wave fields. One may
note that the form of the source term, the right-hand side
(RHS) of the equation, is similar to the form in the 1D
theory. This occurs because the steady-state momentum
does not have a y component and because the chosen
steady state has no x dependence. A different geometry
could produce a more complicated equation, where the
transverse dependence of the steady state changes the
form of the equation. near the FEL resonance both
(0*—k?) and [—ol+(k +ko)p,] are small. We may
then approximate

0*—k*= 20k —0)=—20v , (22a)

—w—r—+(k +ko)=v+é=v+ko+to

z pZ

1_L], (22b)

where v is the eigenvalue and £ is a detuning (mismatch)

parameter. We look for nonreal eigenvalues. Those with

negative imaginary parts correspond to growing modes.
In Eq. (21) for 8E, the y dependence of the coefficients

is only through the density 2. We assume
h(y)=0, |y | >a (23)

multiply Eq. (21) by a?, and write it in the following non-
dimensional form:

3%8E, 5 — "
5 +é 43E,c—ah(y)(¢2_—“)2 =0. (24)
The independent variable is
y=y/a, (25)

and the normalized eigenvalue and mismatch parameter
are

¢*=—20va?, (26a)

p=2o0ta’ . (26b)

We are now looking for a nonreal ¢> with a positive

imaginary part. The quantity a in Eq. (24) is defined as
2

(koa) , 27

a=(Ja)wa)

kOPz

and the normalized current J and density & are

J=[" dyhpy,

h(y)=2ah(y)/J .

(28a)

(28b)

Equation (24) is equivalent to the equation derived by
Moore® for the cylindrical geometry. We have adopted
some of his notations.

Our purpose is to study the dependence of the solu-
tions of Eq. (24) on the parameter a for two density
profiles #(¥). We examine the dependence of the gain,
the imaginary part of ¢?, on this parameter. We also ad-
dress the question of optical guiding, i.e., the extent to
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which the wave beam is confined to the volume that the
electron beam occupies. We derive scaling laws where
possible and complement them with numerical calcula-
tions. We start by determining the domains in the com-
plex ¢? plane where nonreal eigenvalues are allowed. A
similar energy integral was derived in Ref. 9.

III. DERIVATION OF AN ENERGY INTEGRAL

We multiply Eq. (24) by 8E and integrate from —
to oo, assuming the integral exists. Integration by parts
yields

__f_ww dy

2

d3E, -
+ [ dp|8E, |

dy

ah
(¢*—p)?
Taking the imaginary part of the equation and assuming
Im¢? is not zero, we obtain

X =0. (29

¢*—

ARe(¢p?—u)
| o @hRe($"—p)
|¢?—p|*

As in Rayleigh’s inflection theorem!! the term in the
large parentheses has to take both positive and negative
values. Since when A equals zero this term is positive, for
some ¥ the density # must be large enough to make the
term negative. Possible nonreal eigenvalues are those
which obey

2ah_ Re(¢*—pu)
| —p|*

[* dy|8E.|? =0. (30)

<0, (31a)

and

ah {[Re(¢*—p)]*—[Im(¢?) P}

2ah _Re(¢*—p)
|¢*—p*

vjhere h, and h _ are the maximal and minimal values of

h, respectively. If the wave extends beyond the volume

that the beam occupies, & _ is simply zero, i.e., Eq. (32b)

is trivially satisfied. If, however, there is a conductor at

y==1, and A _ does not equal zero, Eq. (32b) constitutes
a constraint for the eigenvalue. Denoting

F,=(ah )",

>0, (31b)

(32a)

we can easily show that the maximal possible imaginary
part of ¢? is

Vv

(Img?) =y, = —2—3—F+ (32b)

when
F

Re(¢2—y)=X,=—T+ . (32¢)
Also nonreal eigenvalues are possible if

X, <Re(¢?*—pn) <0, (33a)
where

X,=-2'F, . (33b)

Figure 1 shows a schematic of the domain in the complex
(¢°—p) plane where nonreal eigenvalues are allowed.
Only the upper half plane is plotted. The domain is sym-
metric relative to the real axis. When A _ is zero, the
inner curve shrinks to the origin.

Further information about the location of the eigenval-
ues, which was previously obtained by Moore,'? can be
obtained by taking the real part of Eq. (29). Using the
negativity of the first term in that equation we then find
that

* dy |8E, | * |Re(¢?)—
f—w |¢*—p|*

Xz X,
Re(p?-p)

FIG. 1. The domain in the complex (¢?—pu) plane where
nonreal eigenvalues are allowed.

>0. (34)

We multiply Eq. (30) by Re(#?), subtract it from Eq. (34),
and obtain

Im(¢?)> 3[Re(¢?— )+ 2uRe(d>—p) . (35)

Thus nonreal eigenvalues are allowed in the part of the
complex (¢?—p) plane which is bounded from below by
the parabola described by Eq. (35). When the parabola
crosses the real axis at a point larger than X, only a part
of the domain shown in Fig. 1 is allowed. In particular,
when t— — « only a small part of that domain, the part
very close to the imaginary axis, remains allowed. On the
other hand, if

lff—‘— <X, , (36)

the nonreal eigenvalues have to be sought in the whole
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domain shown in Fig. 1.

Before we turn to the solution of Eq. (24) for two
specific density profiles, we formulate an equivalent prob-
lem which is defined for ¥ on [0, « ), instead of for y on
(— 0, 00). We limit ourselves to electron beams of sym-
metric density

h(F)=h(—y) . (37

The problem we solve is a two-point boundary value
problem in which

SE (£L)=0, (38)

where L equals 1 when conductors are located at the
boundaries of the electron beam and at infinity in the ab-
sence of a waveguide. Because of the symmetry of both
the density (37) and the boundary conditions (38), Eq.
(24) has two families of solutions, symmetric and an-
tisymmetric with respect to y. Therefore, it is sufficient
to solve Eq. (24) for y >0, where the boundary conditions
are

S8E (0)=0=8E (L) (39)
for the symmetric solutions, and
8E, (0)=0=08E,(L) (40)

for the antisymmetric solutions. In Secs. IV and V we
solve Eq. (24) with the boundary conditions (39) for two
density profiles.

IV. AN ELECTRON BEAM OF CONSTANT DENSITY

A. The density profile

We start with a uniform electron beam of density

_ L |yl<t

h(y)= 0, |7|>1. (41)
The symmetric solution inside the beam is

SE, =e 4 g1 (42)
where

X2=¢*— ((ﬁ%y—)z : (43)

B. Guided waves

In the case of guided waves, when a conductor is locat-
ed at y =11, the quantities # | and h_ are equal, and the
domain of allowed nonreal eigenvalues shrinks to a curve.
The boundary conditions specify a discrete set of eigen-
values. The boundary condition at y =1 yields

e~ 4ei—0 (44)
and thus
2
X:= [% (2n+12? (n=0,1,2,...) . 45)

From the definition (43) we get
2

a (2n +1)%, (46)

(7 —p)
which may also be written as
2

(2n +1)?

T

¢h— >

s

(-2 |- |3 —a=0. 47)

Equation (47) is a cubic polynomial for ¢2 of the form
similar to that in the 1D theory of the FEL. For every n,
if the mismatch parameter satisfies

2

L= % (2n +1)%, (48)

#2 has a maximal imaginary part
3
Img2 = —23—a1 Zn (49)

Thus the various eigenmodes have the same maximal
growth rate. For large n, Eq. (46) ceases to be valid, since
X, becomes large and the approximation we used (0 =k)
no longer holds true. The polynomial (46) has, for any n,
three roots which correspond to three modes. When

2

<< —’2’— (2n +1)? (50)

is satisfied, the modes are nonresonant. One root is then
large and real,
2

¢ = % (2n +1) (51)

and is close to the vacuum waveguide eigenvalue. The
other two roots are close to u and satisfy
2

a (2n +1)% . (52)

(¢ —p)?

In Fig. 1, ¢2 of Eq. (52), for n—> o, tend to the origin
along the curve in the upper half-plane and are nearly
pure imaginary. They are

m

2

R

2a1/2i

2— —= e e
e TP T 53

Thus, ¢*=p is an accumulation point of a series of eigen-
values which correspond to nonresonant unstable modes.

C. Unbounded waves

We now turn to the case of unbounded waves. The
solution outside the beam which vanishes at infinity is

8E,=be'?”, 3>1, Im¢>0. (54)

We require the field and its derivative to be continuous at
the beam boundary, and thus

eX e X=pei? (55a)

X(eX—e~Xy=gbe'? . (55b)
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Equations (43), (55a), and (55b) determine ¢, X, and b. By
dividing the two last equations we obtain the dispersion
relation

X(e*—e~'Y)
(eX4e=') ¢ 6
The domain of allowed nonreal eigenvalues is again
seen in Fig. 1, where the inner bounding curve shrinks to
the origin. One could search numerically for the eigen-
values ¢? in that domain. However, for large and small
a’s, it is possible to derive analytic approximations for
the eigenvalues with the largest imaginary part.
We start with large a. We expect ¢ to be much larger
than X, and from Eq. (56) we approximate

e 4e X=0. (57)

The wave at the beam boundary is very small but the
wave derivative is not that small. To lowest order, X is

E

Xo=(2n +1) > (58)
and the eigenvalue is
J
V3+4i
2 cos lzr— (2n +1) 1—1—2—0—[—;—%’1
SE, (y)= /6
QAT exp lim/64+(—i +VHIE—(1-5)
a 2

We turn now to the case of small a. The eigenvalue ¢>
is then expected to be small, much smaller than X2. From
the dispersion relation (56) we deduce that, to lowest or-
der,

eiX_e~iX=0 , (64)
and thus
Xpo=nm (n=0,1,2,3...). (65)

We approximate Eq. (43) as

=2 (66)
(¢*—p)?
and the eigenvalue becomes, for n larger than zero,
172
2 a
= = 1,2, PR . 67
o'=p+ - (n ) (67)

Larger gain is obtained for the lowest mode (n =0).
Since X is much smaller than 1, Eq. (56) becomes

iX*=¢ . (68)

Note that ¢ is indeed much smaller than X, which is con-
sistent with our assumption. From Egs. (66) and (68) we
obtain

io(p*—p)i=a, (69)

vy, y<li

i=exp(Lim)a'’? . (59)

Thus, to lowest order, when «a is large the eigenvalue is
the same as in the 1D theory. The wave profile inside the
beam is the same as in the case of a guided wave. The
wave is almost confined to the electron-beam volume.
This is the case of strong optical guiding.

In order to obtain the form of the wave outside the
electron beam we have to solve the equations to the next
order. Since X, is 6(1), we assume X; to be much smaller
than 1, and Eq. (56), to first order, becomes

This relation enables us to write Eq. (55a), to lowest or-
der, as

iX,(e0—e M0)=pye'® (61)
which yields
(2n 4 1)w |7
boz——aT/é—exp [1 [‘6‘——¢0] l . (62)

For large a the wave is

(63a)
, y>1. (63b)
f
and at resonance, when p is zero,
¢2=a2/5e31ri/5 . (70)

The eigenvalue of the fundamental mode (n =0) has a
larger imaginary part than the eigenvalues of the higher
modes [Eq. (67)] and thus also a higher gain. As expect-
ed, for small o, when diffraction is large, the gain for all
modes is lower than in the 1D theory where it scales as
a'’3. Following Moore® we define a normalized gain.
Since the eigenvalue ¢? is proportional to a? [Eq. (26)],
and since the parameter a is proportional to a® [Eq. (28)],
the normalized gain is defined as

g =Im(¢?)/a?®/ . (71)

Using Egs. (59) and (70) we may now write the normal-
ized gains for large and small a’s. They are

—‘Qa"‘/15 as a— o (72a)
g = 2
sin(37) as @a—0 . (72b)

Note that the result here for the rectangular beam is
different from the result for the cylindrical beam.> For
small a’s, the normalized gain for the rectangular beam
converges to a constant while it diverges for the cylindri-
cal beam.
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We now write the explicit form of the transverse wave
profile for small a’s. At resonance for the fundamental
mode

Y—e—iT/1041/10 (73)

and thus when a is small,

=2
1+exp(%irr)cx’/522—-, <1 (74a)

OF, = [1—exp(Lim)a'’®/2]exp[exp(tim)a'* 7],
F>1. (74b)

This completes the analysis of the FEL which employs
a constant density electron beam. In Sec. V we turn to
the case of a nonuniform electron beam.

V. AN ELECTRON BEAM OF NONCONSTANT
DENSITY

A. General analysis

We study the FEL which employs an electron beam of
the following, relatively simple, density profile:

(75a)
(75b)

e PARA P A

Ry
o, ipiet.

The two density profiles are shown in Fig. 2. We limit
ourselves to .he symmetric solutions and solve for posi-
tive ¥ only. Since h _ is zero here the inner curve in Fig.
1 shrinks to the origin. The domain in the complex plane
where nonreal eigenvalues are allowed is therefore the
same for both guided waves and unbounded waves.
Equation (24) becomes

3;%‘— ¢2~%§1_;—y;2) S8E =0, 0<y<1. (76)
We define a new independent variable §,

y=p&+q, an
where

(6 1/3

p=— 2a ] (78)
and

g=1— fz—(%zc;—_ﬂ—)z— , (79)
and write Eq. (76) as

d’8E,

e —§8E, =0. (80)

This is Airy’s equation, and its general solution is'*

5Ex=alA,-(§)+blB,-(§) . (81)
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We are interested in the solution on the semi-infinite line
in the complex § plane which starts at {=¢, and passes
through {=¢,, where

Since we limit ourselves to the symmetric solution, we re-
quire as a first boundary condition, that the derivative
vanish at §:

a, A/(&))+b,B/(£y)=0 . (83)

We start by studying guided waves and then turn to un-
bounded waves.

B. Guided waves

When a conductor is located at the beam edge, there is
a second boundary condition:

a, A,(£)+b,B,(£)=0. (84)

Equations (83) and (84) for a, and b, have nontrivial
solutions if their determinant is zero. The dispersion re-
lation is thus

A[(Eo)B,(£))—B{(o) A,(8,)=0.. (85)

The eigenvalues can be found by searching numerically in
the domain in Fig. 1. We do not solve Eq. (85), but show
that, as in the case of constant density, the origin in the
complex ¢?—pu plane is an accumulation point of nonreal
eigenvalues along a curve close to the imaginary axis.

When ¢ is close to u, g is nearly 1, and p is very large.
Then ¢, is close to zero, and &, is very large. The disper-
sion relation (85) is approximately

B/(&) B0 _
,§° =——=V3. (86)
4/(&)

A;(0)
We use the asymptotic expressions for the Airy functions,
assume that the argument of §, is smaller than 7 /3, and
obtain

—2exp(2£/)=V73 . (87)
For large n we find §, to be
. 2 In(V3/2)
=[2@2n+Dmi PP |14+ T =
So=[3(2n + )mi] + 3 an s 1)md (88)

The argument of §, is close to but smaller than 7 /3, con-
sistent with our assumption. From the definition of &,
[Eq. (82)], we see that for each n two of the eigenvalues
#2 are nonreal and satisfy approximately

2 (2a)'?
b=t T

32n+Dm
Thus, as in the constant density case (53), ¢*= W is an ac-
cumulation point of a series of eigenvalues which corre-

spond to nonresonant unstable modes. We now turn to
the case of unbounded waves.

(89)
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C. Unbounded waves

The wave outside the beam has the same form for both
constant and nonconstant densities:

8E,=Ce'¥, y7>1. (90)

We require the field and its derivative to be continuous at
y=1,

a, A;(§)+b,B;(§)=Ce?, (91a)

i{a,A,.'<g1)+bl3;<g1)]=i¢ca¢ . (91b)

Equations (83), (91a), and (91b) have nontrivial solutions
fora,, b,,and Cif

B/(§o) 4/(5)— A4;(5)B;(§))
Bl(E) A (L)) — A[(EQ)B(E))

=¢i2, (92)

where i¢p equals £!/2. Equation (92) is the dispersion re-
lation for unbounded waves. Numerical examples will be
given later. Here we find the eigenvalues analytically for
large and small a’s.

We start with large a’s and study the case of resonance
when u is zero. From the analysis in Sec. III, we know
that the largest allowed imaginary part is that of the ei-
genvalue for which g is zero. We look, therefore, for an
eigenvalue for which g goes to zero when «a is large. For
such an eigenvalue, §, obeys

&— | 2a| exp(iim) , (93)

as a— . We look for eigenvalues which have large
imaginary parts such that §, is 6(1). Substituting the
asymptotic form of Airy’s functions and their deriva-
tives' into Eq. (92) we see that some of the terms in the
equation are proportional to exp( — %é’? ’2) which diverges
for large a. The rest of the terms are proportional to
exp(%ﬁ /2) which decays for large a and, to lowest order,
joins smoothly the solution outside the beam. Equation
(92) is thus replaced by the requirement that the
coefficient of exp(~§§?/ %) is zero. To lowest order in
1/, we obtain

A/(&y)
i

—B/(Ly)— eI A= Bl(L)— Al(Eg)e ™ (94)

We find {, numerically:

Lo=m=0.48—i1.26 . 95)

The eigenvalue is thus, asymptotically,

¢*=(2a)Pexp( 2i) 1—2;-(2a)‘1/9exp(%i1r) . (96)

The asymptotic solution for large a, not too close to
the origin, is$
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exp[%(za)l/6851ri/6y 3/2] ,

a) " «<y<1 (97a)

SE, = ‘
exp[(2a)'®e*™ /5y — )],

§>1. (97b)

It is difficult to compute the wave profile for large a’s by
matching a numerical solution of the differential equation
inside the beam to a solution for y greater than 1 (outside
the beam), since for most values of ¢2 the solutions
diverge near the beam boundary. Instead, one should
seek a solution which joins smoothly the function in (97a)
for 7 several times greater than (2a)~!/° but still much
smaller than 1.

We now turn to the solution for small a’s. We assume
that §; and {, are small and expand the Airy’s functions
in their small arguments. The dispersion equation (92)
becomes

_ 2

Since g [Eq. (79)] is nearly 1, we obtain the following
equation for the eigenvalue:
2042 2
¢l —pr __ 2a . (99)
2a 4p*—p)?

At resonance, the eigenvalue with the maximum imagi-
nary part is

¢2=C12/583m/5 , (100)

and the normalized gain (71) is

3
g=2‘/3—§3a—”‘5, a— o (101a)
and
g =sin(37/5), a—0. (101b)
T T T
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FIG. 2. The two density profiles: The constant density beam
(solid line) and the triangular-shaped beam (dashed line).
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For small a’s the wave field is

1+a'Pexpltim)[y—1(3—1)], y<1
8E, = N (102)
expla Cexp($im)y], y>1.

Comparing the two density profiles, we see that for large
a’s, the gain of a FEL which employs the nonconstant
density beam [Eq. (96)] is larger by a factor of 2!/ than
the gain of a FEL which employs a constant density
beam [Eq. (59)]. For small a’s, however, the gain is the
same for both density profiles [Egs. (70) and (100)]. For
the large diffraction case, i.e., small a, the eigenvalue of
the fundamental mode is not sensitive to the density
profile of the electron beam. When «a is large and optical
guiding is strong, the gain is proportional to a!/?, as in
the 1D theory. When « is small and diffraction is large,
the electron beam occupies only a small part of the
volume occupied by the wave. The interaction is then
weaker and the gain scales as a®/°

Wave electric field magnitude (arbitrary units)

— (@)

/

N a=05x10°

O O O O O O O O C O =
L L L . . - |
/!

T T T T T T ‘A';"‘V“""' 7"”\7 "v; T T H‘L
0.0 0.10.20.30.40.50.60.70.80.91.01.11.21.3

y

Wave magnetic field magnitude (arbitrary units)
6

(b)

51000 Q=05x10°

04 ) s sttt §

0.0 0.1 0.20.30.40.50.60.70.80.91.01.11.21.3
y
FIG. 3. The absolute value of (a) the wave electric field and
(b) the wave magnetic field for @=0.5X10° and p=0, for the
constant density beam (solid line) and for the triangular-shaped
beam (dashed line).
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VI. NUMERICAL SOLUTIONS AND DISCUSSION

In this section we present the calculated wave trans-
verse profiles for various values of a for the two density
profiles. We also show the normalized gain as a function
of a. All the examples refer to the fundamental mode
and to the case of resonance (u=0).

In Figs. 3—5 the solid line describes the wave profiles
for the constant density profile, while the dashed line
shows the wave profiles for the triangular-shaped density
profile. The wave magnetic field 8B, is simply the y
derivative of 8E,. The vertical units are arbitrary; it is
the relative intensity that is important. The plots show
the absolute values of the electric and the magnetic fields.

In Fig. 3 we show the wave profiles for the case of
strong optical guiding. For a large coupling parameter
(a=0.5x10°) the absolute values of the wave electric
field [Fig. 3(a)] and of the wave magnetic field [3(b)] are
shown. For the beam of constant density the wave ex-
tends to y equals 1 and then decreases abruptly. The
derivative of the magnetic field is not continuous at y
equals 1 since the current is not continuous there for this
density profile. For the triangular-shaped beam the wave

Wave electric field magnitude (arbitrary units)

.oj' ——— (a)
9'1 T T Q=20

81 Tl T
1 N .

O O O 0O 0 O O O O O W
)
P
/

<

N /\ @=20 '

FIG. 4. The absolute value of (a) the wave electric field and
(b) the wave magnetic field for a=2 and u =0 for the constant
density beam (solid line) and for the triangular-shaped beam
(dashed line).
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Wave electric field magnitude (arbitrary units)

100 e (a)

<

FIG. 5. The absolute value of (a) the wave electric field and
(b) the wave magnetic field for a=10"* and u =0, for the con-
stant density beam (solid line) and for the triangular-shaped
beam (dashed line).

is localized near the midplane (y =0) and decays to near-
ly zero inside the electron beam volume. While for the
constant density beam the wave profile converges to a
shape given by Eq. (63) when a is infinity, for the
triangular-shaped beam the wave tends to be confined
more and more to the midplane, and its thickness tends
to zero. For the computation of the wave profile for the
constant density beam we employed Eq. (63). For the
triangular-shaped beam we employed the numerical pro-
cedure described in Sec. V. The solution of the
differential equation and its derivative were required at
7 =0.3 [which is three times (2a)~ '] to equal the values
of the function (97a) and its derivative. The computed ei-
genvalue ¢” is —473.56 + i844.05.

Figures 4(a) and 4(b) show the wave profiles for a equal
2. The wave for the constant density beam occupies a
larger volume than the wave for the triangular-shaped
beam. The eigenvalue ¢? is —0.438 + i0.978 for the con-
stant density beam and —0.438 +i1.046 for the
triangular-shaped beam.
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Figures 5(a) and 5(b) show the wave profiles for the
case of large diffraction, when a is 10~*. The eigenvalues
are nearly identical for the two density profiles, and the
wave profiles are also similar. The wave profile for the
constant density beam was found according to Eq. (74)
and for the triangular-shaped beam according to Eq.
(102).

Figure 6 shows the normalized gain g [Eq. (71)] versus
log,qa for the two density profiles. The curve with larger
g shows the gain for the triangular-shaped beam. The
gain was found by solving the differential equation (24)
numerically and by looking for ¢ with the largest imagi-
nary part for which the boundary conditions are satisfied.
These results are denoted in Fig. 6 by solid lines. The re-
sults for large a’s are denoted by dashed lines. For large
a’s the gain was calculated by Eq. (72) for the constant
density beam and by Eq. (101a) for the triangular-shaped
beam. The two parts of each curve join smoothly. For
small a’s the normalized gain converges to a limiting
value, identical for both density profiles [Egs. (72b) and
(101b)].

Thus when optical guiding is strong, the gain for the
triangular-shaped beam is larger by a factor of 2!/* than
for the constant density beam. When diffraction is large,
however, the results are not sensitive to the density
profile, and the gain is the same for both density profiles.

When the current J is kept constant, the dependence of
the gain on the beam thickness a is expressed through the
dependence of the normalized gain g on a'/>. In this case
the gain is increased by reducing the beam thickness and
thus increasing the beam density. The dependence of the
normalized gain on a demonstrates this feature. Howev-
er, the decrease in the beam thickness is followed by an
increase in the diffraction and a decrease in the filling fac-
tor, and this decrease has the opposite effect of reducing
the gain. These two contradictory effects cancel each
other out and the gain for small thickness has an upper
bound. One should note that such an upper bound for
the gain does not exist for a cylindrical beam® where the

I I T T T T I
10 -
8 .
or ]

9

41 \\._‘
~ Y
2r -

| L 1 | Il L

Iog'oa

FIG. 6. The normalized gain vs log,ca for the two density
profiles. The upper curve shows the gain for the triangular-
shaped beam and the lower curve the gain for the constant den-
sity beam.
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gain goes to infinity (albeit very slowly) when the radius
of the beam goes to zero.

When the beam thickness is constant, the dependence
of the gain on the current is expressed through the depen-
dence of Im¢? on a. In this case the gain grows when the
current grows.
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FIG. 1. The domain in the complex (¢*—pu) plane where
nonreal eigenvalues are allowed.



